Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2045, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041174

RESUMO

Lung mast cells are important in host defense, and excessive proliferation or activation of these cells can cause chronic inflammatory disorders like asthma. Two parallel pathways induced by KIT-stem cell factor (SCF) and FcεRI-immunoglobulin E interactions are critical for the proliferation and activation of mast cells, respectively. Here, we report that mast cell-expressed membrane protein1 (MCEMP1), a lung-specific surface protein, functions as an adaptor for KIT, which promotes SCF-mediated mast cell proliferation. MCEMP1 elicits intracellular signaling through its cytoplasmic immunoreceptor tyrosine-based activation motif and forms a complex with KIT to enhance its autophosphorylation and activation. Consequently, MCEMP1 deficiency impairs SCF-induced peritoneal mast cell proliferation in vitro and lung mast cell expansion in vivo. Mcemp1-deficient mice exhibit reduced airway inflammation and lung impairment in chronic asthma mouse models. This study shows lung-specific MCEMP1 as an adaptor for KIT to facilitate SCF-mediated mast cell proliferation.


Assuntos
Asma , Fator de Células-Tronco , Animais , Camundongos , Proliferação de Células , Pulmão/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/metabolismo
2.
Cell Rep Med ; 3(10): 100764, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36182684

RESUMO

Omicron has become the globally dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, creating additional challenges due to its ability to evade neutralization. Here, we report that neutralizing antibodies against Omicron variants are undetected following COVID-19 infection with ancestral or past SARS-CoV-2 variant viruses or after two-dose mRNA vaccination. Compared with two-dose vaccination, a three-dose vaccination course induces broad neutralizing antibody responses with improved durability against different SARS-CoV-2 variants, although neutralizing antibody titers against Omicron remain low. Intriguingly, among individuals with three-dose vaccination, Omicron breakthrough infection substantially augments serum neutralizing activity against a broad spectrum of SARS-CoV-2 variants, including Omicron variants BA.1, BA.2, and BA.5. Additionally, after Omicron breakthrough infection, memory T cells respond to the spike proteins of both ancestral and Omicron SARS-CoV-2 by producing cytokines with polyfunctionality. These results suggest that Omicron breakthrough infection following three-dose mRNA vaccination induces pan-SARS-CoV-2 immunity that may protect against emerging SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Formação de Anticorpos , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Citocinas , RNA Mensageiro
3.
Immunology ; 162(3): 252-261, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32633419

RESUMO

The presentation of antigenic peptides by major histocompatibility complex (MHC) class I and class II molecules is crucial for activation of the adaptive immune system. The nucleotide-binding domain and leucine-rich repeat receptor family members CIITA and NLRC5 function as the major transcriptional activators of MHC class II and class I gene expression, respectively. Since the identification of NLRC5 as the master regulator of MHC class I and class-I-related genes, there have been major advances in understanding the function of NLRC5 in infectious diseases and cancer. Here, we discuss the biological significance and mechanism of NLRC5-dependent MHC class I expression.


Assuntos
Imunidade Adaptativa , Antígenos de Histocompatibilidade Classe I/metabolismo , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Transativadores/metabolismo , Animais , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Inflamassomos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais , Evasão Tumoral , Microambiente Tumoral
4.
Anticancer Res ; 40(6): 3209-3220, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32487615

RESUMO

BACKGROUND/AIM: Non-small cell lung cancer (NSCLC) is one among the most common cancers worldwide. Recently, dietary phytochemicals have been reported as an attractive approach to improve the symptoms of NSCLC patients. Tannic acid is a natural polyphenol, which is known to have anticancer effects on in vitro models of breast, gingival and colon cancer. However, the molecular mechanisms associated with the actions of tannic acid on A549 human lung cancer cells have not been elucidated. MATERIALS AND METHODS: In this study, we analyzed the effect of tannic acid on A549 cells and their underlying mechanisms using western blotting, flow cytometry, invasion assay and tumorsphere formation assay. RESULTS: Tannic acid treatment suppressed the viability of A549 cells through cell cycle arrest and induction of the intrinsic pathways of apoptosis. In addition, the various malignant phenotypes of A549 cells including invasion, migration, and stemness were inhibited by tannic acid treatment. CONCLUSION: Tannic acid could be used as an effective inhibitor of lung cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Taninos/uso terapêutico , Células A549 , Apoptose , Linhagem Celular Tumoral , Humanos , Transdução de Sinais , Taninos/farmacologia
5.
Proc Natl Acad Sci U S A ; 117(14): 8083-8093, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213586

RESUMO

Three-dimensional (3D) cell culture is well documented to regain intrinsic metabolic properties and to better mimic the in vivo situation than two-dimensional (2D) cell culture. Particularly, proline metabolism is critical for tumorigenesis since pyrroline-5-carboxylate (P5C) reductase (PYCR/P5CR) is highly expressed in various tumors and its enzymatic activity is essential for in vitro 3D tumor cell growth and in vivo tumorigenesis. PYCR converts the P5C intermediate to proline as a biosynthesis pathway, whereas proline dehydrogenase (PRODH) breaks down proline to P5C as a degradation pathway. Intriguingly, expressions of proline biosynthesis PYCR gene and proline degradation PRODH gene are up-regulated directly by c-Myc oncoprotein and p53 tumor suppressor, respectively, suggesting that the proline-P5C metabolic axis is a key checkpoint for tumor cell growth. Here, we report a metabolic reprogramming of 3D tumor cell growth by oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent of Kaposi's sarcoma and primary effusion lymphoma. Metabolomic analyses revealed that KSHV infection increased nonessential amino acid metabolites, specifically proline, in 3D culture, not in 2D culture. Strikingly, the KSHV K1 oncoprotein interacted with and activated PYCR enzyme, increasing intracellular proline concentration. Consequently, the K1-PYCR interaction promoted tumor cell growth in 3D spheroid culture and tumorigenesis in nude mice. In contrast, depletion of PYCR expression markedly abrogated K1-induced tumor cell growth in 3D culture, not in 2D culture. This study demonstrates that an increase of proline biosynthesis induced by K1-PYCR interaction is critical for KSHV-mediated transformation in in vitro 3D culture condition and in vivo tumorigenesis.


Assuntos
Transformação Celular Neoplásica/patologia , Herpesvirus Humano 8/metabolismo , Prolina/metabolismo , Pirrolina Carboxilato Redutases/metabolismo , Sarcoma de Kaposi/patologia , Proteínas Virais/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Metabolômica , Camundongos , Prolina Oxidase/metabolismo , Sarcoma de Kaposi/virologia , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto , delta-1-Pirrolina-5-Carboxilato Redutase
6.
Cancers (Basel) ; 12(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204508

RESUMO

Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype and accounts for more than 80% of all lung cancer cases. Epidermal growth factor receptor (EGFR) phosphorylation by binding growth factors such as EGF activates downstream prooncogenic signaling pathways including KRAS-ERK, JAK-STAT, and PI3K-AKT. These pathways promote the tumor progression of NSCLC by inducing uncontrolled cell cycle, proliferation, migration, and programmed death-ligand 1 (PD-L1) expression. New cytotoxic drugs have facilitated considerable progress in NSCLC treatment, but side effects are still a significant cause of mortality. Gallic acid (3,4,5-trihydroxybenzoic acid; GA) is a phenolic natural compound, isolated from plant derivatives, that has been reported to show anticancer effects. We demonstrated the tumor-suppressive effect of GA, which induced the decrease of PD-L1 expression through binding to EGFR in NSCLC. This binding inhibited the phosphorylation of EGFR, subsequently inducing the inhibition of PI3K and AKT phosphorylation, which triggered the activation of p53. The p53-dependent upregulation of miR-34a induced PD-L1 downregulation. Further, we revealed the combination effect of GA and anti-PD-1 monoclonal antibody in an NSCLC-cell and peripheral blood mononuclear-cell coculture system. We propose a novel therapeutic application of GA for immunotherapy and chemotherapy in NSCLC.

7.
Cells ; 9(2)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979292

RESUMO

: Human embryonic carcinoma (EC; NCCIT) cells have self-renewal ability and pluripotency. Cancer stem cell markers are highly expressed in NCCIT cells, imparting them with the pluripotent nature to differentiate into other cancer types, including breast cancer. As one of the main cancer stem cell pathways, Wnt/ß-catenin is also overexpressed in NCCIT cells. Thus, inhibition of these pathways defines the ability of a drug to target cancer stem cells. Tannic acid (TA) is a natural polyphenol present in foods, fruits, and vegetables that has anti-cancer activity. Through Western blotting and PCR, we demonstrate that TA inhibits cancer stem cell markers and the Wnt/ß-catenin signaling pathway in NCCIT cells and through a fluorescence-activated cell sorting analysis we demonstrated that TA induces sub-G1 cell cycle arrest and apoptosis. The mechanism underlying this is the induction of mitochondrial reactive oxygen species (ROS) (mROS), which then induce the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated extrinsic apoptosis pathway instead of intrinsic mitochondrial apoptosis pathway. Moreover, ribonucleic acid sequencing data with TA in NCCIT cells show an elevation in TRAIL-induced extrinsic apoptosis, which we confirm by Western blotting and real-time PCR. The induction of human TRAIL also proves that TA can induce extrinsic apoptosis in NCCIT cells by regulating mROS.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma/metabolismo , Carcinoma/patologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Taninos/farmacologia , Trifosfato de Adenosina/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Via de Sinalização Wnt/efeitos dos fármacos
8.
mBio ; 10(4)2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387913

RESUMO

The amino (N)-terminal region of human papillomavirus (HPV) minor capsid protein (L2) is a highly conserved region which is essential for establishing viral infection. Despite its importance in viral infectivity, the role of the HPV N-terminal domain has yet to be fully characterized. Using fine mapping analysis, we identified a 36-amino-acid (aa) peptide sequence of the L2 N terminus, termed L2N, that is critical for HPV infection. Ectopic expression of L2N with the transmembrane sequence on the target cell surface conferred resistance to HPV infection. Additionally, L2N peptide with chemical or enzymatic lipidation at the carboxyl (C) terminus efficiently abrogated HPV infection in target cells. Among the synthetic L2N lipopeptides, a stearoylated lipopeptide spanning aa 13 to 46 (13-46st) exhibited the most potent anti-HPV activity, with a half-maximal inhibitory concentration (IC50) of ∼200 pM. Furthermore, we demonstrated that the 13-46st lipopeptide inhibited HPV entry by blocking trans-Golgi network retrograde trafficking of virion particles, leading to rapid degradation. Fundamentally, the inhibitory effect of L2N lipopeptides appeared to be evolutionarily conserved, as they showed cross-type inhibition among various papillomaviruses. In conclusion, our findings provide new insights into the critical role of the L2N sequence in the HPV entry mechanism and identify the therapeutic potential of L2N lipopeptide as an effective anti-HPV agent.IMPORTANCE HPV is a human oncogenic virus that causes a major public health problem worldwide, which is responsible for approximately 5% of total human cancers and almost all cases of cervical cancers. HPV capsid consists of two structure proteins, the major capsid L1 protein and the minor capsid L2 protein. While L2 plays critical roles during the viral life cycle, the molecular mechanism in viral entry remains elusive. Here, we performed fine mapping of the L2 N-terminal region and defined a short 36-amino-acid peptide, called L2N, which is critical for HPV infection. Specifically, L2N peptide with carboxyl-terminal lipidation acted as a potent and cross-type HPV inhibitor. Taken together, data from our study highlight the essential role of the L2N sequence at the early step of HPV entry and suggests the L2N lipopeptide as a new strategy to broadly prevent HPV infection.


Assuntos
Proteínas do Capsídeo/antagonistas & inibidores , Capsídeo/metabolismo , Papillomavirus Humano 16/efeitos dos fármacos , Lipopeptídeos/farmacologia , Proteínas Oncogênicas Virais/antagonistas & inibidores , Infecções por Papillomavirus/virologia , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/fisiologia , Humanos , Lipopeptídeos/genética , Lipopeptídeos/metabolismo , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/tratamento farmacológico , Internalização do Vírus/efeitos dos fármacos
9.
Cell Rep ; 27(2): 549-560.e6, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970257

RESUMO

Excessive and unresolved neuroinflammation is a key component of the pathological cascade in brain injuries such as ischemic stroke. Here, we report that TRIM9, a brain-specific tripartite motif (TRIM) protein, was highly expressed in the peri-infarct areas shortly after ischemic insults in mice, but expression was decreased in aged mice, which are known to have increased neuroinflammation after stroke. Mechanistically, TRIM9 sequestered ß-transducin repeat-containing protein (ß-TrCP) from the Skp-Cullin-F-box ubiquitin ligase complex, blocking IκBα degradation and thereby dampening nuclear factor κB (NF-κB)-dependent proinflammatory mediator production and immune cell infiltration to limit neuroinflammation. Consequently, Trim9-deficient mice were highly vulnerable to ischemia, manifesting uncontrolled neuroinflammation and exacerbated neuropathological outcomes. Systemic administration of a recombinant TRIM9 adeno-associated virus that drove brain-wide TRIM9 expression effectively resolved neuroinflammation and alleviated neuronal death, especially in aged mice. These findings reveal that TRIM9 is essential for resolving NF-κB-dependent neuroinflammation to promote recovery and repair after brain injury and may represent an attractive therapeutic target.


Assuntos
Isquemia Encefálica/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Acidente Vascular Cerebral/metabolismo , Proteínas com Motivo Tripartido/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Células Cultivadas , Feminino , Células HEK293 , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção , Fosforilação , Acidente Vascular Cerebral/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Nat Microbiol ; 4(3): 429-437, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617349

RESUMO

Severe fever with thrombocytopenia syndrome phlebovirus (SFTSV), listed in the World Health Organization Prioritized Pathogens, is an emerging phlebovirus with a high fatality1-4. Owing to the lack of therapies and vaccines5,6, there is a pressing need to understand SFTSV pathogenesis. SFSTV non-structural protein (NSs) has been shown to block type I interferon induction7-11 and facilitate disease progression12,13. Here, we report that SFTSV-NSs targets the tumour progression locus 2 (TPL2)-A20-binding inhibitor of NF-κB activation 2 (ABIN2)-p105 complex to induce the expression of interleukin-10 (IL-10) for viral pathogenesis. Using a combination of reverse genetics, a TPL2 kinase inhibitor and Tpl2-/- mice showed that NSs interacted with ABIN2 and promoted TPL2 complex formation and signalling activity, resulting in the marked upregulation of Il10 expression. Whereas SFTSV infection of wild-type mice led to rapid weight loss and death, Tpl2-/- mice or Il10-/- mice survived an infection. Furthermore, SFTSV-NSs P102A and SFTSV-NSs K211R that lost the ability to induce TPL2 signalling and IL-10 production showed drastically reduced pathogenesis. Remarkably, the exogenous administration of recombinant IL-10 effectively rescued the attenuated pathogenic activity of SFTSV-NSs P102A, resulting in a lethal infection. Our study demonstrates that SFTSV-NSs targets the TPL2 signalling pathway to induce immune-suppressive IL-10 cytokine production as a means to dampen the host defence and promote viral pathogenesis.


Assuntos
Interações Hospedeiro-Patógeno , MAP Quinase Quinase Quinases/metabolismo , Phlebovirus/patogenicidade , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/patologia , Feminino , Células HEK293 , Células HeLa , Humanos , Interleucina-10/administração & dosagem , Interleucina-10/genética , MAP Quinase Quinase Quinases/imunologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Phlebovirus/efeitos dos fármacos , Proteínas Proto-Oncogênicas/imunologia , Células RAW 264.7 , Genética Reversa
11.
Nat Microbiol ; 2(11): 1558-1570, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28827581

RESUMO

Blood CD14+ monocytes are frontline immunomodulators categorized into classical, intermediate or non-classical subsets, and subsequently differentiated into M1 pro- or M2 anti-inflammatory macrophages on stimulation. Although the Zika virus (ZIKV) rapidly establishes viraemia, the target cells and immune responses, particularly during pregnancy, remain elusive. Furthermore, it is unknown whether African- and Asian-lineage ZIKV have different phenotypic impacts on host immune responses. Using human blood infection, we identified CD14+ monocytes as the primary target for African- or Asian-lineage ZIKV infection. When immunoprofiles of human blood infected with ZIKV were compared, a classical/intermediate monocyte-mediated M1-skewed inflammation by the African-lineage ZIKV infection was observed, in contrast to a non-classical monocyte-mediated M2-skewed immunosuppression by the Asian-lineage ZIKV infection. Importantly, infection of the blood of pregnant women revealed an enhanced susceptibility to ZIKV infection. Specifically, Asian-lineage ZIKV infection of pregnant women's blood led to an exacerbated M2-skewed immunosuppression of non-classical monocytes in conjunction with a global suppression of type I interferon-signalling pathway and an aberrant expression of host genes associated with pregnancy complications. Also, 30 ZIKV+ sera from symptomatic pregnant patients showed elevated levels of M2-skewed immunosuppressive cytokines and pregnancy-complication-associated fibronectin-1. This study demonstrates the differential immunomodulatory responses of blood monocytes, particularly during pregnancy, on infection with different lineages of ZIKV.


Assuntos
Tolerância Imunológica , Receptores de Lipopolissacarídeos/imunologia , Monócitos/virologia , Complicações Infecciosas na Gravidez/imunologia , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Adolescente , Adulto , Diferenciação Celular , Citocinas/sangue , Citocinas/imunologia , Feminino , Fibronectinas , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Macrófagos/virologia , Monócitos/fisiologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Transdução de Sinais , Adulto Jovem , Zika virus/genética , Zika virus/imunologia , Infecção por Zika virus/virologia
12.
PLoS Pathog ; 10(3): e1004012, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651521

RESUMO

RIG-I is a DExD/H-box RNA helicase and functions as a critical cytoplasmic sensor for RNA viruses to initiate antiviral interferon (IFN) responses. Here we demonstrate that another DExD/H-box RNA helicase DHX36 is a key molecule for RIG-I signaling by regulating double-stranded RNA (dsRNA)-dependent protein kinase (PKR) activation, which has been shown to be essential for the formation of antiviral stress granule (avSG). We found that DHX36 and PKR form a complex in a dsRNA-dependent manner. By forming this complex, DHX36 facilitates dsRNA binding and phosphorylation of PKR through its ATPase/helicase activity. Using DHX36 KO-inducible MEF cells, we demonstrated that DHX36 deficient cells showed defect in IFN production and higher susceptibility in RNA virus infection, indicating the physiological importance of this complex in host defense. In summary, we identify a novel function of DHX36 as a critical regulator of PKR-dependent avSG to facilitate viral RNA recognition by RIG-I-like receptor (RLR).


Assuntos
RNA Helicases DEAD-box/imunologia , Infecções por Vírus de RNA/imunologia , Transdução de Sinais/imunologia , eIF-2 Quinase/imunologia , Grânulos Citoplasmáticos/imunologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Vírus de RNA/imunologia , RNA de Cadeia Dupla/imunologia , RNA Interferente Pequeno/genética , RNA Viral/imunologia , Receptores Imunológicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico , Transfecção
13.
PLoS One ; 7(8): e43031, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912779

RESUMO

Retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) function as cytoplasmic sensors for viral RNA to initiate antiviral responses including type I interferon (IFN) production. It has been unclear how RIG-I encounters and senses viral RNA. To address this issue, we examined intracellular localization of RIG-I in response to viral infection using newly generated anti-RIG-I antibody. Immunohistochemical analysis revealed that RLRs localized in virus-induced granules containing stress granule (SG) markers together with viral RNA and antiviral proteins. Because of similarity in morphology and components, we termed these aggregates antiviral stress granules (avSGs). Influenza A virus (IAV) deficient in non-structural protein 1 (NS1) efficiently generated avSGs as well as IFN, however IAV encoding NS1 produced little. Inhibition of avSGs formation by removal of either the SG component or double-stranded RNA (dsRNA)-dependent protein kinase (PKR) resulted in diminished IFN production and concomitant enhancement of viral replication. Furthermore, we observed that transfection of dsRNA resulted in IFN production in an avSGs-dependent manner. These results strongly suggest that the avSG is the locus for non-self RNA sensing and the orchestration of multiple proteins is critical in the triggering of antiviral responses.


Assuntos
Grânulos Citoplasmáticos/imunologia , RNA Helicases DEAD-box/imunologia , Imunidade Inata/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , RNA Viral/metabolismo , eIF-2 Quinase/imunologia , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Fibroblastos , Células HeLa , Humanos , Imuno-Histoquímica , Interferon Tipo I/imunologia , Camundongos , Camundongos Knockout , Células Vero , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA